https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

Where We Are

Motivations, Economics, Ecosystemes,

Trends
Networking Storage Part3: Compute
Datacenter ~ Collective Distibuted) Fie Cloud storage Dismibuled Big data

Aehworking cormuRication Systerns / Database Compuiing processing

Let’s Focus On: Multi-node Distributed Systems

We have two primary problems to solve in real systems

1. How to Distribute Data (we'll not cover, also not in exam)
* Read DDIA
* Read GFS paper

* Read BigTable paper

2. How to Distribute Compute (we'll cover in lectures)
®* Batching Processing
® Streaming Processing

How to Analyze Distributed Systems

¢ Scalability
* Data volume
* Read/Write/Compute load

® Consistency and correctness
® Read / Write sees consistency data
® Compute produce correct results

* Fault tolerance / high availability
* When one fails, another can take over.

* |Latency and throughput
* Distribute machines worldwide.
® Reduce network latency.

Today’s topic: Batch Processing

* Overview

* |O & Unix pipes

* MapReduce

* Beyond MapReduce

Basic Computing System Paradigm

Input, Requests, Queries Computing systems Output, Responses, Results

—
—

(Processing!)

Processing latency

A feedback cycle time

—> |nteractive data science!

direct manipulation
no visible lag

—> Online system: handle request ASAP

turn-taking
minutes to seconds .
—, Stream processing systems

(hear-real-time systems)

batch-processing

hours or overnight , Batch processing systems

(Offline systems)

Figure from https:/ /publishup.uni-potsdam.de /opus4-ubp /frontdoor /deliver /index /docld /10090 /file /mueller_diss.pdf

Today’s topic: Batch Processing

* |O & Unix pipes: the first batching processing system

Shell example .

hao@HaoPC: $ 1s -lah ~/.
total 256K

drwxr—-xr-x 14:01

drwxr—-xr-x 2021

drwxr—-xr-x 00:10

drwxr—-xr-x 2021

—rW——————— 14:01 .bash_history
—r'W—r——r--— 2021 .bash_logout
-rWw-r--r-- . 22:17 .bashrc
—IrW——————— 2023 .boto
drwxr—-xr-x 2023

drwxr—-xr-x 2023

drwxr—-xr-x 2023

drwxr—-xr-x 2022

drwxr—-xr-x 2021

drwxr—-xr-x 2023

-rw-r——-r-- 2023 .gitconfig
drwx 2022

drwxr—-xr-x 2023

drwxr—-xr-x 2022

drwxr—-xr-x 2022

drwxr—-xr-x 2023

drwxr—-xr-x 2021

drwx 02:09

FEFEEFEE

FEEFEEFEEE

-rw-r——-r—-— 09:36 .motd_shown

=

drwxr—-xr-x 2023
—CW——————— 2023 .node_repl_history
drwxr—-xr-x . 2023
drwx . 2022
drwxr—-xr-x 2023
—r'W—r—-—-r—— 2023 .profile
drwxr—-xr-x . 2023
—CW——————— : 22:12 .python_history
drwxr—-xr-x 2022
drwxr—-xr-x 22:21
drwxr—-xr-x 2023
drwxr—-xr-x 12:23
-rw-r—--r-- 2021 .sudo_as_admin_successful
drwxr—-xr-x 2022
—rW——————— 18:34 .viminfo
-rw-r—-—r-— 2021 .vimrc
drwxr—-xr-x 2022
-rw-r——r-- 2023 .wget-hsts
-C'W—C——C-— 23:26 calulate_flops.py
—rWXr—xr-x 00:39 estimate_throughput. py
79 drwxr—-xr-x 2023

"c: drwxr-xr-x 2023
-C'W—C——C—— 01:48 perf_model.py
-rw-r——r-- 02:13 test.py

5

b6 SRR

|_I
PRPNORPRPRPORRPNREPNNEN

Run commands B

10

Useful shell commands

* Shell already has a collection of ich commands
® Some Useful commands

* uptime, cut, date, cat, finger, hexdump, man, mdadsum,
quotaq,

* mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd

® uname, zip, unzip, gzip, tar

® ir, sed, sort, unig, ascli

* Type "man command’ 1o read about shell commands

What do these shell commands doe

® cat dups.ixt | sort | unig

® cat dups.txt | sort -V | unio

® cat dups.ixt | sort -V | unig > ouftfile.txt
* ir'a""e" < z.txt

® catzixt | tfrae

12

Batch processing with Unix Tools

cat /var/log/nginx/access.log | (1
awk '{print $7}"' | (2

sort |
uniq -c |
sort -r -n |
head -n 5

4189 /favicon.ico

3631 /2013/05/24/improving-security-of-ssh-private-keys.html

2124 [2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
1369 /

915 /css/typography.css

* Read the log file.

* Split each line into fields by white
space, output only the 7th element
(requested URL).

* Alohabetically sort

* Filter out repeated lines.

® Sort It again based on the line number
(-n)

* Qut put the first five lines.

13

The biggest limitation of Unix tools is that they run only
on a single machine — and that’s where tools like
Hadoop come in.

14

Today’s topic: Batch Processing

* MapReduce

® HDFS - infrasfructure

* Programming models (api)
* Job execution

* Workflow

15

History of MapReduce/Hadoop

| CPU |
‘Mem‘

_

| CPU |
‘Mem‘

_

Compute + Storage Nodes

| CPU |
‘Mem‘

_

Network

Compute + Storage Nodes

* Medium-performance processors
* Modest memory
® 1-2 disks

Network

* Conventional Ethernet switches

* 10 Gb/s within rack
* 100 Gb/s across racks

16

Data-Intensive System Challenge

For Computation That Accesses 1 TB in § minutes

®* Data distributed over 100+ disks
* Assuming uniform data partitioning

* Compute using 100+ processors

® Connected by gigabit Ethernet (or equivalent)

System Requirements
® [ofs of disks
® | ofs of processors

®* | ocated in close proximity
* Within reach of fast, local-area network

Local Network

} } }
safllis |
Node 1 Node 2 Node n

17

Hadoop Project

Flle system with files distributed across nodes

Local Network

¢ ¢ ¢

LRI R

Node 1 Node 2 Node n

* Store multiple (typically 3 copies of each file)
* |f one node fails, data still available

* Logically, any hode has access to any file
* May need to fetch across network (ideally, leverage locality for pert.)

Map / Reduce programming environment

® Soffware manages execution of tasks on nodes

18

Today’s topic: Batch Processing

* Overview
* |O & Unix pipes
* MapReduce

* HDFS - infrasfructure

* Programming models (API)
* Job execution (runtime)

* Workflow

* Beyond MapReduce

19

MAPREDUCE: SIMPLIFIED DATA PROCESSING
ON LARGE CLUSTERS

by Jeffrey Dean and Sanjay Ghemawat

Abstract

apReduce is a programming model and an associated implementation for processing
M and generating large datasets that is amenable to a broad variety of real-world tasks.

Users specity the computation in terms of a map and a reduce tunction, and the under-
lying runtime system automatically parallelizes the computation across large-scale clusters ot
machines, handles machine failures, and schedules inter-machine communication to make efti-
cient use of the network and disks. Programmers find the system easy to use: more than ten
thousand distinct MapReduce programs have been implemented internally at Google over the
past four years, and an average of one hundred thousand MapReduce jobs are executed on
Google’s clusters every day, processing a total of more than twenty petabytes of data per day.

ANNALS OF TECHNOLOGY

THE FRIENDSHIP THAT MADE GOOGLE HUGE

Coding together at the same computer, Jeff Dean and Sanjay Ghemawat changed the course of the company—and the

Internet.

By James Somers

December 3, 2018

’} ;,1 o] T AV G N R Q U ﬂ J 7 AN ,.,,..3-4 »4 LORW .---] J /] "J & R 2.0 gl L ,:]
e ’}

: ; 5 o« . ; 1 : — s = - =~ ;
4 i 3
N Lo Al N : 2 - o NG AR \

B o s
SR

010000
; 8 ‘ "‘ 1alg 1

. / s ‘ :

JULUg 0 E50T

nnnna ﬂﬂ nlnn

I\
L

nnnt 4hnnd

acndnnnnd 4 h-

https:.//www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-
google-huge

21

TF"’le 1S Q mea.SOfZ D'f Of'l's.lna‘i"(s O'f O \Qof-d bs (omFQn‘,ﬁ
%6 Num ber of times a Word appears ‘n a doc Wwith +he number

of docs the word app-effs in. - DF :
TE-IDF = TF(t9) X |) 9

1\
Term fm%"‘”"ﬁ Inverse decoment
/l ‘Freabve,nus P i
Number of Fimes term + .1. % n(ammen

appears it & doc, d 103 %

Document 'Frqvcno:)
of theterm T

22

Count the numlber of occurrences of word in a large

collection of documents

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIintermediate(w, “17);

reduce(String key, Iterator values):

/] key: a word

// values: a list of counts

int result = O;

for each v in values:
result += ParseInt(v);

Emit(AsString(result));

®* Functional programming
® Functions are stateless

* They tfakes an input, processes
and output a result.

® Pros and Conse

23

Data models

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);

reduce(String key, Iterator values):

/] key: a word

// values: a list of counts

int result = O;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

ﬁ

map
reduce

k1,v1)
(k2,list(v2))

— 1ist(kR,v_)
— list(v&)

24

Come,
Dick

MapReduce Example

Come
and
see.

Come,
come.

® Create a word index of set of documents

Come
and
see.

Come
and
see

Spot.

Come, Dick.

Come andd see.
Come, come.
Come amnd see,

Come and see Spol.

(dick, 1)
Word-Count
Pairs
(-
W M Extract
Come, Come Come
Dick and and
see. See
Spot.

* Map: generate (word, count) pairs for all words in document

® Reduce: sum word counts across documents

Discussion:
Other possible way to iImplement this using map-reduce?

27

Today’s topic: Batch Processing

* Overview
* |O & Unix pipes
* MapReduce

® HDFS - Infrastructure
®* Programming models
* Job execution
* Workflow

* Beyond MapReduce

MapReduce Execution (Runtime)

Why do we heed
shuftlee

Task
Manager

R Output Files

Reducer | | Reducer oo Reducer R Reducers
\
Shuffle
J/
Mapper Mapper oo o Mapper | W Mappers

Input Files (Partitioned into Blocks)

29

Single Mapper

K

NS
Ny

Hash Function h

* Maps each key Kto integerisuch thatO<i<R
Mapper Operation

® Reads input file blocks

* Generates pairs (K, V)

* Writes to local file h(K)

> (K)E{O...., R-1}

01

Mapper

Block

Local
Files

Distributed Mapper

* Dynamically map input file blocks onto mappers
®* Each generates key/value pairs from its blocks

® Each writes R files on local file system

R local files
per mapper

M Mappers

Manager)V%\\

Input Files (Partitioned into Blocks)

31

Shuftling

FEach Reducer:

* Handles 1/R of the possible key values

* Most cases: just a hash function

* Need to handle fault tolerance

MXR
local files

Reducer

Reducer

T

Reducer

‘/

R Reducers

32

Reducer

FEaoch Reducer:

® Executes reducer function for each key

* Writes output values to parallel file system

R Output Files

Reducer

Reducer

Reducer

R Reducers

33

MapReduce Effect

MapReduce Step

® Reads set of files from file system

® Generates new set of files

Can iterate to do more complex processing
R Output Files

MapReduce

Input Files (Partitioned into Blocks)

34

Today’s topic: Batch Processing

* Overview
* |O & Unix pipes
* MapReduce

® HDFS - Infrastructure
* Programming models (API)
* Job execution (runtime)
* MapReduce dataflow
* Beyond MapReduce

Example: Sparse Matrices with Map/Reduce

_A — _B — _C —

10 20 -1 ~10 -80
30 40 X |2 -3 = -60 -250

50 60 70 -4 ~170 -460

®* Task: Compute product C=AB

®* Assume most maltrix entries are O
Motivation

®* Core problem in scientific computing

* Challenging for parallel execution

* Demonstrate expressiveness of Map/Reduce

36

Computing Sparse Maftrix Product

A

10

50

30

60

20

40

70

1

1

2

1 B
20 , 2 -2
. |
2
©
A3

® Represent matrix as list of nonzero entries

<row, col, value, matrixiD>

®* How to represent the computation as map-reducee

* Phase 1: Compute all products gk - by
®* Phase 2: Sum products for each entry i,
®* Each phase involves a Map/Reduce

3 — 1
1
2
2

37

Phase 1T M
ap of Matrix Multiply

L 10 (D)
= 1
, 20
A ~ 3
, 30
A > 2
, A0
> 3 | Key =
3 y = col
> 1
5 60
A > 2
3 10
/'\A :
S
5 1
Key =row| |° -
, -3
B > 2
3 -4
s 2

y k

38

Phase 1 “Reduce” of Maftrix Multiply

1 c -1
-50

3 A »1
-60

2 G > 1
-90

2 G > 2
-120

3 G -1
-180

3 c > 2
-80

1 G — 2
-160

2 G > 2
-280

3 G > 2

* Generate all products ajy - by;

Phase 2 Map of Matrix Multiply

(1)} (1) Key=11 1 =2 .3
C C
-50
-80
3 A E Key = 1,2 1 = — 2
-60 Key = 2,1 -60
2 3 1 y 2 = 1
-90 —
2 I3 »2 | Key = row,col
-120
3 I3 1
-180
3 I3 2
-80
1 s 2
-160
2 3 2
-280
3 > 2
_/C _/

* Group products qg;x - by; with matching values of i and |

40

Phase 2 Reduce of Matrix Multiply

-10

Key=11 1 s

> 1

042

-8
Key=12 1 3

Key= 2,1 2 -60 -1

C

® Sum products to get final entries

-10

C
-80

C

10 -80
-60 -250
-170 -460

41

Recap: MapReduce Implementation

Buillt on Top of Parallel File System

* Google: GFS, Hadoop: HDFS

®* Provides global naming

® Reliability via replication (typically 3 copies)
Breaks work into tasks

®* Master schedules tasks on workers dynamically

* Typically #tasks >> #processors
Net Effect

®* [nput: Set of files in reliable file system

®* Qutput: Set of files in reliable file system

42

Exploring Parallel Computation Models

Map/Reduce

MPI
SETI@home Threads O PRAM
O O O
Low Communication High Communication
Coarse-Grained Fine-Grained

Map/Reduce Provides Coarse-Grained Parallelism
e Computation done by independent processes

* File-based communication

Observations
* Relatively “natural” programming model

® Research issue to explore full potential and limits

43

Today’s topic: Batch Processing

* Overview
* |O & Unix pipes
* MapReduce

® HDFS - Infrastructure
* Programming models (API)
* Job execution (runtime)
* Workflow
* MapReduce Recap
* Beyond MapReduce

MapReduce System architecture (Paper)

User
Program

split

split 1

split 2

(3)re

worker

split 3

split 4

Input
files

44

(1) fork .° -
© (1) fork

(2)
~.assign
map

worker

<,
<

Map
phase

€1 fork

4ssign

reduce |

(6) write
worker
(5) remote read
(4) local write .E

Intermediate files
(on local disks)

-

Reduce
phase

output
file 0

output
file 1

Output
files

45

Fault Tolerance

Map/Reduce

I2RERERRNNERR
1292RRRTN 11
IRERRRRRREINY

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Data Integrity

® Store multiple copies of each file

* Including infermediate results of each Map / Redut
* Continuous checkpointing

Recovering from Failure

* Simply recompute lost result
* Localized effect

Dynamic scheduler keeps all processors busy

46

Map/Reduce Summary

Typical Map/Reduce Applications

® Sequence of steps, each requiring map & reduce
® Series of data fransformafions

Strengths of Map/Reduce

® User writes simple functions, system manages complexities of mapping,

synchronization, fault tolerance
* Very general

* Good for large-scale data analysis

Map Reduce Summary: Cons

®* Disk I/O overhead is super high
®* Noft flexible enough: Each map/reduce step must complete before next begins
* Noft suitable for workloads:

® |terative processing

® Real-time processing

* Map-reduce is still difficult to program with

48

PageRank Computation

Initially
* Assign weight 1.0 to each page R,

Iteratively

® Select arbitrary node and update its value

Convergence Ri < 0.1+0.9*(%2Ry+ %Rz + "% Rs)

® Results unique, regardless of selection ordering

Q: how to express pagerank using map-reduce?

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Let’s Focus On: Multi-node Distributed Systems
	Slide 4: How to Analyze Distributed Systems
	Slide 5: Today’s topic: Batch Processing
	Slide 6: Basic Computing System Paradigm
	Slide 7: Processing latency
	Slide 8: Today’s topic: Batch Processing
	Slide 9: Shell example
	Slide 10: Useful shell commands
	Slide 11: What do these shell commands do?
	Slide 12: Batch processing with Unix Tools
	Slide 13
	Slide 14: Today’s topic: Batch Processing
	Slide 15: History of MapReduce/Hadoop
	Slide 16: Data-Intensive System Challenge
	Slide 17: Hadoop Project
	Slide 18: Today’s topic: Batch Processing
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Count the number of occurrences of word in a large collection of documents
	Slide 23: Data models
	Slide 24: MapReduce Example
	Slide 25
	Slide 26: Discussion: Other possible way to implement this using map-reduce?
	Slide 27: Today’s topic: Batch Processing
	Slide 28: MapReduce Execution (Runtime)
	Slide 29: Single Mapper
	Slide 30: Distributed Mapper
	Slide 31: Shuffling
	Slide 32: Reducer
	Slide 33: MapReduce Effect
	Slide 34: Today’s topic: Batch Processing
	Slide 35: Example: Sparse Matrices with Map/Reduce
	Slide 36: Computing Sparse Matrix Product
	Slide 37: Phase 1 Map of Matrix Multiply
	Slide 38: Phase 1 “Reduce” of Matrix Multiply
	Slide 39: Phase 2 Map of Matrix Multiply
	Slide 40: Phase 2 Reduce of Matrix Multiply
	Slide 41: Recap: MapReduce Implementation
	Slide 42: Exploring Parallel Computation Models
	Slide 43: Today’s topic: Batch Processing
	Slide 44: MapReduce System architecture (Paper)
	Slide 45: Fault Tolerance
	Slide 46: Map/Reduce Summary
	Slide 47: Map Reduce Summary: Cons
	Slide 48: PageRank Computation
	Slide 49: Q: how to express pagerank using map-reduce?

