
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Where We Are

Cloud

Networking

Collective
communication

Datacenter
networking

Storage

(Distributed) File

Systems / Database

Cloud storage

Part3: Compute

Distributed
Computing

Motivations, Economics, Ecosystems,
Trends

Big data
processing

3

Let’s Focus On: Multi-node Distributed Systems

We have two primary problems to solve in real systems

1. How to Distribute Data (we’ll not cover, also not in exam)

• Read DDIA

• Read GFS paper

• Read BigTable paper

2. How to Distribute Compute (we’ll cover in lectures)

• Batching Processing

• Streaming Processing

4

How to Analyze Distributed Systems

• Scalability

• Data volume

• Read/Write/Compute load

• Consistency and correctness

• Read / Write sees consistency data

• Compute produce correct results

• Fault tolerance / high availability

• When one fails, another can take over.

• Latency and throughput

• Distribute machines worldwide.

• Reduce network latency.

5

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• Beyond MapReduce

6

Basic Computing System Paradigm

Computing systems

(Processing!)

Input, Requests, Queries Output, Responses, Results

7

Processing latency

Online system: handle request ASAP

Stream processing systems

(near-real-time systems)

Batch processing systems

(Offline systems)

Interactive data science!

Figure from https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/10090/file/mueller_diss.pdf

8

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes: the first batching processing system

• MapReduce

• Beyond MapReduce

9

Shell example

“.****rc”

Run commands

10

Useful shell commands

• Shell already has a collection of rich commands

• Some Useful commands

• uptime, cut, date, cat, finger, hexdump, man, md5sum,

quota,

• mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd

• uname, zip, unzip, gzip, tar

• tr, sed, sort, uniq, ascii

• Type “man command” to read about shell commands

11

What do these shell commands do?

• cat dups.txt | sort | uniq

• cat dups.txt | sort -V| uniq

• cat dups.txt | sort -V| uniq > outfile.txt

• tr "a" "e" < z.txt

• cat z.txt | tr a e

12

Batch processing with Unix Tools

• Read the log file.

• Split each line into fields by white

space, output only the 7th element

(requested URL).

• Alphabetically sort

• Filter out repeated lines.

• Sort it again based on the line number

(-n)

• Out put the first five lines.

13

The biggest limitation of Unix tools is that they run only

on a single machine — and that’s where tools like

Hadoop come in.

14

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (api)

• Job execution

• Workflow

• Beyond MapReduce

15

History of MapReduce/Hadoop

Compute + Storage Nodes

• Medium-performance processors

• Modest memory

• 1-2 disks

Network

• Conventional Ethernet switches

• 10 Gb/s within rack

• 100 Gb/s across racks

Network

Compute + Storage Nodes

• • •
CPU

Mem

CPU

Mem

CPU

Mem

16

Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

• Data distributed over 100+ disks

• Assuming uniform data partitioning

• Compute using 100+ processors

• Connected by gigabit Ethernet (or equivalent)

System Requirements

• Lots of disks

• Lots of processors

• Located in close proximity

• Within reach of fast, local-area network

17

Hadoop Project

File system with files distributed across nodes

• Store multiple (typically 3 copies of each file)

• If one node fails, data still available

• Logically, any node has access to any file

• May need to fetch across network (ideally, leverage locality for perf.)

Map / Reduce programming environment

• Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •

18

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• Beyond MapReduce

19

https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-

google-huge

21

22

Count the number of occurrences of word in a large

collection of documents

• Functional programming

• Functions are stateless

• They takes an input, processes

and output a result.

• Pros and Cons?

23

Data models

• Create a word index of set of documents

24

MapReduce Example

Come
and
see.

Come
and
see.

Come,
come.

Come,
Dick

Come
and
see

Spot.

25

• Map: generate word, count pairs for all words in document

• Reduce: sum word counts across documents

Come
and
see.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

dick, 1

see, 1

come, 1

and, 1

come, 1

come, 1

come, 1

M M M M

come, 2

see, 1

and, 1

and, 1

spot, 1

Sum
dick



1

and


3

come


6

see


3

spot


1

Come,
Dick

Come
and
see

Spot.

Discussion:

Other possible way to implement this using map-reduce?

27

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models

• Job execution

• Workflow

• Beyond MapReduce

MapReduce Execution (Runtime)

Task
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

Reducer Reducer Reducer
R Reducers

Shuffle

R Output Files

…

…Why do we need

shuffle?

29

Single Mapper

Hash Function h

• Maps each key K to integer i such that 0 ≤ i < R

Mapper Operation

• Reads input file blocks

• Generates pairs K, V

• Writes to local file h(K)

hK

Local
Files

30

Distributed Mapper
• Dynamically map input file blocks onto mappers

• Each generates key/value pairs from its blocks

• Each writes R files on local file system

Task
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

R local files
per mapper

31

Shuffling

Each Reducer:

• Handles 1/R of the possible key values

• Most cases: just a hash function

• Need to handle fault tolerance

M X R
local files

Reducer Reducer Reducer
R Reducers…

… … …

32

Reducer

Each Reducer:

• Executes reducer function for each key

• Writes output values to parallel file system

Reducer Reducer Reducer
R Reducers

R Output Files

…

MapReduce Step

• Reads set of files from file system

• Generates new set of files

Can iterate to do more complex processing

33

MapReduce Effect

Input Files (Partitioned into Blocks)

MapReduce

R Output Files

34

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• MapReduce dataflow

• Beyond MapReduce

35

Example: Sparse Matrices with Map/Reduce

• Task: Compute product C = A·B

• Assume most matrix entries are 0

Motivation

• Core problem in scientific computing

• Challenging for parallel execution

• Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

-10 -80

-60 -250

-170 -460

C

X =

36

Computing Sparse Matrix Product

• Represent matrix as list of nonzero entries

row, col, value, matrixID

• How to represent the computation as map-reduce?

• Phase 1: Compute all products ai,k · bk,j

• Phase 2: Sum products for each entry i,j

• Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

37

Phase 1 Map of Matrix Multiply

• Group values ai,k and bk,j according to key k

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = row

1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = col

38

Phase 1 “Reduce” of Matrix Multiply

• Generate all products ai,k · bk,j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

X

X

X

39

Phase 2 Map of Matrix Multiply

• Group products ai,k · bk,j with matching values of i and j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = row,col

40

Phase 2 Reduce of Matrix Multiply

• Sum products to get final entries

1 1
-10

C

2 1
-60

C

2 2
-250

C

3 1
-170

C

1 2
-80

C

3 2
-460

C

-10 -80

-60 -250

-170-460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

41

Recap: MapReduce Implementation

Built on Top of Parallel File System

• Google: GFS, Hadoop: HDFS

• Provides global naming

• Reliability via replication (typically 3 copies)

Breaks work into tasks

• Master schedules tasks on workers dynamically

• Typically #tasks >> #processors

Net Effect

• Input: Set of files in reliable file system

• Output: Set of files in reliable file system

42

Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism

• Computation done by independent processes

• File-based communication

Observations

• Relatively “natural” programming model

• Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

Map/Reduce

MPI

43

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• MapReduce Recap

• Beyond MapReduce

44

MapReduce System architecture (Paper)

45

Fault Tolerance

Data Integrity

• Store multiple copies of each file

• Including intermediate results of each Map / Reduce

• Continuous checkpointing

Recovering from Failure

• Simply recompute lost result

• Localized effect

• Dynamic scheduler keeps all processors busy

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map/Reduce

46

Map/Reduce Summary

Typical Map/Reduce Applications

• Sequence of steps, each requiring map & reduce

• Series of data transformations

Strengths of Map/Reduce

• User writes simple functions, system manages complexities of mapping,

synchronization, fault tolerance

• Very general

• Good for large-scale data analysis

Map Reduce Summary: Cons

• Disk I/O overhead is super high

• Not flexible enough: Each map/reduce step must complete before next begins

• Not suitable for workloads:

• Iterative processing

• Real-time processing

• Map-reduce is still difficult to program with

48

PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

Q: how to express pagerank using map-reduce?

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Let’s Focus On: Multi-node Distributed Systems
	Slide 4: How to Analyze Distributed Systems
	Slide 5: Today’s topic: Batch Processing
	Slide 6: Basic Computing System Paradigm
	Slide 7: Processing latency
	Slide 8: Today’s topic: Batch Processing
	Slide 9: Shell example
	Slide 10: Useful shell commands
	Slide 11: What do these shell commands do?
	Slide 12: Batch processing with Unix Tools
	Slide 13
	Slide 14: Today’s topic: Batch Processing
	Slide 15: History of MapReduce/Hadoop
	Slide 16: Data-Intensive System Challenge
	Slide 17: Hadoop Project
	Slide 18: Today’s topic: Batch Processing
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Count the number of occurrences of word in a large collection of documents
	Slide 23: Data models
	Slide 24: MapReduce Example
	Slide 25
	Slide 26: Discussion: Other possible way to implement this using map-reduce?
	Slide 27: Today’s topic: Batch Processing
	Slide 28: MapReduce Execution (Runtime)
	Slide 29: Single Mapper
	Slide 30: Distributed Mapper
	Slide 31: Shuffling
	Slide 32: Reducer
	Slide 33: MapReduce Effect
	Slide 34: Today’s topic: Batch Processing
	Slide 35: Example: Sparse Matrices with Map/Reduce
	Slide 36: Computing Sparse Matrix Product
	Slide 37: Phase 1 Map of Matrix Multiply
	Slide 38: Phase 1 “Reduce” of Matrix Multiply
	Slide 39: Phase 2 Map of Matrix Multiply
	Slide 40: Phase 2 Reduce of Matrix Multiply
	Slide 41: Recap: MapReduce Implementation
	Slide 42: Exploring Parallel Computation Models
	Slide 43: Today’s topic: Batch Processing
	Slide 44: MapReduce System architecture (Paper)
	Slide 45: Fault Tolerance
	Slide 46: Map/Reduce Summary
	Slide 47: Map Reduce Summary: Cons
	Slide 48: PageRank Computation
	Slide 49: Q: how to express pagerank using map-reduce?

